انتخاب تأمین‌کننده با استفاده از رویکرد ویکور فازی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مدیریت اجرایی دانشکده مدیریت و اقتصاد،دانشگاه شهید باهنر کرمان

2 استادیار دانشکده مدیریت و اقتصاد،دانشگاه شهید باهنر کرمان

3 استاد دانشکده مدیریت و اقتصاد،دانشگاه شهید باهنر کرمان

چکیده

با ظهور زنجیره تأمین، واحدهای صنعتی و خدماتی ذهن خود را به تأمین‌کنندگان خود معطوف کرده‌اند، و با پیشرفت صنایع و خدمات، به این نکته دست‌یافته‌اند که قیمت پیشنهادی تأمین‌کنندگان تنها ملاک انتخاب و همکاری با آنان نیست. بلکه، مسئله انتخاب تأمین‌کننده یک مسئله تصمیم‌گیری با چندین معیار است. علاوه بر این، مسائل دنیای واقعی معمولاً ساختاری پیچیده دارند. بنابراین، به دلیل وجود ابهام، عدم قطعیت زیاد و هم‌چنین اطلاعات نادقیق، مفهوم استدلال فازی مطرح می‌شود. ورودی سیستم های فازی می‌تواند اطلاعات نادقیق (فازی) باشد، و پردازش سیستم نیز با بهره‌گیری از استدلال تقریبی و به‌طور فازی انجام می‌شود. در این راستا، در این مقاله با بررسی ادبیات انتخاب تأمین‌کننده و معیارهای به‌کاررفته برای این منظور، مناسب‌ترین معیارها شناخته شد. بدین منظور، در ابتدا با طراحی پرسش‌نامه مناسب و نظرخواهی از خبرگان، وزن معیارها در محیط فازی به دست آمد، و پس‌ازآن، تأمین‌کنندگان با استفاده از رویکرد ویکور فازی رتبه‌بندی شدند.         
 

کلیدواژه‌ها


عنوان مقاله [English]

Using Fuzzy VIKOR to Select the Supplier

نویسندگان [English]

  • Marjan Tavasoli Fard 1
  • Mohammad Ali Forghani 2
  • Ali Molahoseyni 3
1 Graduate Student, Faculty of Management and Economics, Shahid Bahonar University of Kerman, Iran
2 Assistant Professor, Faculty of Management and Economics, Shahid Bahonar University of Kerman, Iran
3 Professor, Faculty of Management and Economics, Shahid Bahonar University of Kerman, Iran
چکیده [English]

As the supply chain emerged, the industrial and service organizations began to focus on their suppliers, and as the industries and services developed, they understood that the supplier’s proposed price has not been the only criterion to cooperate; but, the problem of supplier selection (SS) has been a multiple-criteria decision making (MCDM) problem. Besides, real-world problems have always been structurally complex. Therefore, due to ambiguity, high uncertainty, and imprecise information, the concept of fuzzy analysis was introduced. Now, we could use imprecise (fuzzy) information as the input of a fuzzy system, and the process of the system could employ approximate induction based on fuzzy logic. In this regard, studying the literature of SS and the criteria used for this purpose, we identify the most suitable criteria. To do so, primarily we designed an appropriate questionnaire, and then we used it to gather ideas of the experts to obtain the weights of the criteria in the fuzzy environment. Afterwards, using the Fuzzy VIKOR approach, we ranked the suppliers.

کلیدواژه‌ها [English]

  • Supplier selection
  • fuzzy logic
  • Fuzzy VIKOR
  1. Assaoui, N.; Haouari, M. and Hassini, E. (2007). Supplier selection and order lot sizing modeling: A review", Computers & Operations Research, 34: 3516-3540.
  2. Amani, H., and Norang, A., and Jahanshahi, H. (2013). Supplier selection model developed using the technique of multi-criteria decision given the dependence criteria. Journal of Supply Chain Management Extension. The fifteenth year. 41: 60-69.
  3. Denge, X., Ho, Y., Denge, Y., Mahadevan, S. (2014).  Supplier selection using AHP methodology extended by D numbers. Expert Systems with Applications 41 (2014) 156–167.
  4. Dickson, G.W. (1996). An analysis of vendor selection systems and decisions", Journal of Purchasing, 2(1):5-17.
  5. Faeza, F., Ghodsypour, S. H., & OBrien C. (2009), Vendor selection and order allocation using an integrated fuzzy case-based reasoning and mathematical programming model . Int. J. Production Economics, 121, 395-408.
  6. Jafarnejad, CH, A., Fathi, M.R., Faghih, A., Karimi, m., (2012). Applying a New Integration of MCDM Techniques for Supplier Selection (Case Study: Pars Tire Company). Australian Journal of Basic and Applied Sciences, 6(2): 9-19.
  7. Ghazihoseyni, S.M., & Tabarsa, N. (2012). Evaluation and ranking of mineral water industry with the use of fuzzy AHP and VIKOR. National Conference on entrepreneurship and business management knowledge.
  8. Kahraman, U., Ulukan, & Cebeci, Z. (2003). Multi-criteria supplier selection using fuzzy AHP, Logistics Information Management, 16 (6) (2003): 382–394.
  9. Kaufmann, A., & Gupta M.M., (1985). Introduction to fuzzy arithmetic: Theory and applications. Van Nostrand Reinhold, New York.
  10. Khatami Firoozabadi, A., & Khodaverdi, R. (2012). Selected parts suppliers in the automotive industry increasingly using Analytical Hierarchy Process (AHP). Journal of Management Development and Transformation. 9: 45-52.
  11. Lee, A. H. I., Kang, H. Y., Hsu, C. F., & Hung, H. C. (2009). A green supplier selection model for high-tech industry. Expert Systems with Applications, 36(4): 7917–7927.
  12. Mohaghar, A., & Mirkazemi, M. (2011).  Supplier selection and construction engineering companies. Explore the Quarterly Journal of Business Management, the third year, Autumn and Winter, 6: 50-23.
  13. Motaghi, H., & Sahebi, Z, (2011). Evaluate the quality of performance to rank suppliers in fuzzy environment. Journal of the tire industry, supply chain management, (64).
  14. Rodrigues, L, J, F., Osiro, L., Carpinetti, L, C, R., (2013). A fuzzy inference and categorization approach for supplier selection using compensatory and non-compensatory decision rules. Applied Soft Computing 13 (2013) 4133–4147.
  15. Talebi, D., & Molatayefe, F. (2011). Evaluation and selection of suppliers throughout the supply chain, using a combination of fuzzy AHP and fuzzy multi-objective linear programming (Case Study: BMC Manufactory). Outlook Industrial Management. Summer-2: 27-42.
  16. Wang, T.C., & Chang, T.H. (2005). Fuzzy VIKOR as a resolution for multicriteria group decisionmaking, The 11th International Conference on Industrial Engineering and Engineering Management, pp. 352-356.
  17. Weber, C.A., Current. J.R. & Benton. W.C. (1991). Vendor selection criteria and methods. European Journal of Operational Research, 50:2-18.