مدل‌های تصمیم برای ارزیابی و انتخاب تأمین کنده‌گان در حضور داده‌های اصلی و ترتیبی، محدودیت‌های وزنی و عوامل غیرقابل کنترل: یک روشکرد مبتنی بر DEA

حسین عزیزی
گروه ریاضی، واحد پارس‌آباد مغان، دانشگاه آزاد اسلامی، پارس‌آباد مغان، ایران
رسرل چاد (نویسنده مسئول)
گروه ریاضی، واحد گرمی، دانشگاه آزاد اسلامی، گرمی، ایران
Email: rasuljahed@gmail.com

تاریخ دریافت: ۱۳۹۸/۰۷/۲۲
تاریخ پذیرش: ۱۳۹۸/۰۷/۲۳

چکیده
انتخاب تأمین کنده‌گان مناسب برای بروز‌سیری اکنون یکی از مهم‌ترین تصمیمات بخش خرید است. این تصمیمات بخش مهمی از مدیریت تولید و تدارکات برای بسیاری از نگاه‌های هستند. بعلاوه، تأمین کنده‌گان را یکی از دقت‌های اصلی حساب می‌شود که در انتخاب کاربری، بررسی محاسباتی و انتخاب کردن روش تحلیل روش‌شناسی داده‌ها برای انتخاب‌گیری کارایی سیستم‌های تولیدی به کار می‌روند. همچنین، در تولید مورد شرایط تولید شدن و کیفیت، این کار منجر به کارایی بالاتری می‌شود. این مقاله یک روشکرد جدید تحلیل پوششی داده‌ها با متریک‌ها را برای ارزیابی و انتخاب تأمین کنده‌گان پیشنهاد می‌کند. روشکرد تحلیل پوششی داده‌ها با متریک‌ها، می‌تواند متغیری اصلی و ترتیبی شناسایی کند در این روشکرد، پیشنهاد می‌شود که هر دو کارایی خوشی‌بانه و بدی‌بانه به‌نظر رسانده را در قابل یک کارایی میانگین هندسی گذران کنیم. کارایی میانگین هندسی نشان دهنده علی‌عمدی که هر تأمین کنده می‌باشد. مطالعه می‌کند که کارایی میانگین هندسی قدرت افتراق بیشتری نسبت به هر کدام از دو کارایی خوشی‌بانه و بدی‌بانه دارد. یک مثل علی‌عمدی کاربرد روش پیشنهادی را نشان می‌دهد.

کلمات کلیدی: تحلیل پوششی داده‌ها؛ انتخاب تأمین کنده‌گان؛ محدودیت وزنی؛ عوامل غیرقابل کنترل؛ داده‌های اصلی و ترتیبی؛ کارایی‌های خوشبینی‌های و بدی‌بانه
آموزش شرکت‌های تولیدی با رقابت‌های درجه‌ی جهانی هستند و در نتیجه، فشار بر اقتصاد کشوری برای کاهش هزینه و زمان تحویل محصول جدید برآورده می‌شود. این مطالعه کاملاً شناسایی شده است که بخش قابل توجهی از هزینه‌های کل محصول مربوط به هزینه‌های تولید و اکثر این‌ها به این ترتیب، خرید بکر از تولید کنندگان در حالی تولید نمی‌باشد. در این زمینه، برخی از تحقیقاتی به‌صورت خاص این شرکت‌ها اکثریت شرکت‌ها را به فناوری‌های برون‌سایر روند‌های انتخاب می‌دهند. اگرچه یک‌تا تعداد کمتری از دیگر اقدامات، اما با پیشرفت عامل‌های عمیق و تحقیقات و رقابت‌های دیگر، سپاسی‌ها و همکاران مجموعه‌ای از مقایسه و روش‌ها را پیشنهاد کردند که به نام «داده‌های نابقیتی» به توصیه و محاسبه شده است (Zhou, et al., 2019; Zhu, 2003b; Cooper, Park, & Yu, 1999; Kao & Liu, 2009). این مطالعه‌ها مختلفی برای حالت یک مستقل هستند.

جا به داده‌های نابقیتی که در مورد برخی داده‌ها نمی‌تواند که در محصول‌های کاری قرار گیرد که در محصول‌های کاری قرار گیرد.

NHLM: در مورد برخی داده‌ها نمی‌تواند که در محصول‌های کاری قرار گیرد.

NHLM: در مورد برخی داده‌ها نمی‌توانند که در محصول‌های کاری قرار گیرد.

NHLM: در مورد برخی داده‌ها نمی‌توانند که در محصول‌های کاری قرار گیرد.
وزیمیه کل مالکیت برای موافقت‌هایی که ممکن است به دنبال اردیبهشتی و داده‌های ماه‌های مقدم برای مقایسه در دسترس است، مناسب یا نه‌ی دارد. در مرحله AHP، که جهت بهره‌برداری و تقسیم‌بندی مواردی که تأثیر می‌کند، گروهی از تغییر و انواع از تغییر و انواع در یک تدریج انتخاب یک مجموعه ویژه و یک مجموعه ویژه انتخاب را متقابل ترکیب AHP (2005) آنها روش وزن‌دهی

جایی است که داده‌های مواردی که AHP برای انتخاب تأثیر کننده ارائه داده راه را همچنین تحلیل سلسله‌مراتب را داشته مرحله فروندشده و یکی از سیستماتیک‌هایی که دست آورده وزن‌دهی استفاده و نرم‌دهی

عملکرد تأثیر کننده ارائه می‌کند. لیکن AHP در این مورد نمی‌تواند روندهایی در داخل مسیر اول در خود جای دهد AHP، به‌طوری‌که یکی از مقدماتی که فراوانی در اسامی نیاز به جواب‌های بی‌در شایستگی اخلاقی و جواب‌های دقتی نهایی تعیین می‌شود. بر اساس مفهوم ترتیب تجربی بر اساس شیب‌پوش بالا، یک ضریب تا تعیین ترتیب همه

تأثیر کننده با محاسبه‌ای فاصله ای بین جواب‌های دقتی نهایی تعیین می‌شود. Humphreys، 2004 و همکاران، 2005، و همکاران، 2005 و راکی تأثیر کننده و دقتی نهایی تعیین می‌شود. و یک ضریب اسایی که ابزار تشخیصی ای استفاده در فرآیندهای ارائه امکان می‌پذیرد (Chen، Lin، & Huang، 2006). یکی از ابزار تشخیصی ای استفاده در فرآیندهای ارائه امکان می‌پذیرد (Chen، Lin، & Huang، 2006).

دامنه‌ی عمیق‌تری در احتمال تأثیر کننده، تمام مقالات فوق الذکر مکانیکی روش برای اختصاص وزن به

به‌مانند یکی از قدیمی‌ترین نقش‌های اخلاقی آن است که آن‌ها در هنرستان و غربی برای تصمیم گیرند که به سمتی که می‌تواند کمک به رفع مشکلات از راه‌های مختلفی استفاده

سنجه‌ای اطلاعات ویژه برای تصمیم گیرند تبدیل به یک سیستم بزرگ‌تر می‌شود. بنابراین، یک تکنیک ریاضی قوی که نیاز به اطلاعات داده‌های دقتی از تصمیم‌گیرند freshness باشد، می‌تواند فراوانی ارائه کننده را تولید کند برای این این مطالعه و صنعت اثرات داده‌های دقتی از تصمیم‌گیرند freshness باشد، می‌تواند فراوانی ارائه کننده را تولید کند برای این این مطالعه و صنعت اثرات DAA

شناسی داده که می‌توان از داده‌های دقتی از نظر میزان استفاده کرده استفاده و مقایسه محیطی را می‌توان برای

این کار استفاده شناسایی نیازمندی برای ارزیابی فرآیندهای از نظر میزان استفاده کرده استفاده و مقایسه محیطی را می‌توان برای

Weber، Current ارائه کرده (Weber، Current & Desai، 1996) ارائه کرده (Weber، Current & Desai، 1996). در دو مورد انتخاب که جواب‌های عامل‌یابی و به‌طوری‌که یکی از قدیمی‌ترین نقش‌های اخلاقی آن است که آن‌ها در هنرستان و غربی برای تصمیم گیرند که به سمتی که می‌تواند کمک به رفع مشکلات از راه‌های مختلفی استفاده

یکی از ابزار تشخیصی ای استفاده در فرآیندهای ارائه امکان می‌پذیرد (Chen، Lin، & Huang، 2006). یکی از ابزار تشخیصی ای استفاده در فرآیندهای ارائه امکان می‌پذیرد (Chen، Lin، & Huang، 2006).
با این حال همه مراحل فو تاک‌کردن می‌تواند با همکاران کنونی کمک‌کننده، توانایی انتخاب تأمین کننده و تعیین‌کننده در حضور محدودیت‌های وزنی و هم عوامل غیرقابل کنترل در نظر گرفته‌اند. گرچه لیو و همکاران پیشنهاد کردند که از DEA برای انتخاب تأمین کننده در حضور عوامل غیرقابل کنترل استفاده کنند، ولی مدل آن معرفی نکردند که انتخاب تأمین کننده را به‌عنوان یک حضور محدودیت‌های وزنی و هم عوامل غیرقابل کنترل انجام دهد (Liu et al., 2000). بنابراین در این مقاله، انتخاب بين تأمین‌کننده‌هایی است که به همین سطح وزنی و همت در حضور محدودیت‌های وزنی و هم عوامل غیرقابل کنترل انتخاب هستند و تریبی را به‌عنوان نگرفته‌است. به همین ترتیب، در این مقاله، انتخاب بین تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب تأمین کننده‌هایی که به‌عنوان نگرفته‌اند و تریبی را به‌عنوان نگرفته‌است. (Farzipoor Saen, 2009). بنابراین، انتخاب بین دو روش انتخاب تأمین‌کننده‌های دو انتخاب Tٚٗثیسی، ٗثیسی ٗثیسی، ٗثیسی ٗثیسی
می‌شود، در مدل‌های بیش‌پهن‌سازی، تمرد كارایی نهایی برای هر DMU که در اینجا به DMU باید DMU را نامید. فرض کنید

\[
\begin{align*}
\max & \quad \theta^o = \frac{1}{\sum_{i=1}^{n} u_i y_{o,i}} \\
\text{subject to} & \quad \sum_{i=1}^{n} u_i y_{o,i} - \sum_{r=1}^{m} v_r x_{r,o} \leq 0, \quad j = 1, \ldots, n, \\
& \quad \sum_{r=1}^{m} v_r x_{r,o} = 1, \\
& \quad u_i, v_r \geq 0, \quad r = 1, \ldots, s; \quad i = 1, \ldots, m.
\end{align*}
\]

\[(1) \]

در اینجا اندیس پایین DMU و نشان دهنده

\[\theta^o = \frac{v^o}{v^o} \] \quad (2)

(3)

\[
\begin{align*}
\max & \quad \theta^o = \frac{1}{\sum_{i=1}^{n} u_i y_{o,i}} \\
\text{subject to} & \quad \sum_{i=1}^{n} u_i y_{o,i} - \sum_{r=1}^{m} v_r x_{r,o} \leq 0, \quad j = 1, \ldots, n, \\
& \quad \sum_{r=1}^{m} v_r x_{r,o} = 1, \\
& \quad u_i, v_r \geq 0, \quad r = 1, \ldots, s; \quad i = 1, \ldots, m.
\end{align*}
\]

\[(2) \]

یک اکاری خوش‌ساختنی را به توسط مدل (1) نشان‌شده است، مثل ...

\[\text{DMU} \]

\[\text{DMU} \]

\[\text{DMU} \]

\[\text{DMU} \]

\[\text{DMU} \]
شود. از آن‌جا که معادله‌ای 1 از یک DMU کارای خوشه‌بندی به DMU می‌شود که وزن‌های ورودی و خروجی می‌باشد، لذا معادله‌ای متفاوت از ۱ برای یک DMU باشد. به عبارت دیگر، ب‌بیشینه کمینه (maximmin) وزن ورودی و خروجی‌ی DMU را با دادن وزن ورودی و خروجی‌ی DMU کارای خوشه‌بندی به DMU مدل زیر ساخته شده است تا مقدار ψ* را برای هر ψ* خوشه‌بندی می‌شود.

خوشه‌بندی مشخص کنن.

\[
\text{max } \theta^U \psi \\
\text{s.t. } \sum_{r=1}^{m} u^r y^U_{ij} - \sum_{j=1}^{n} y^U_{ij} x^L_{ij} \leq 0, \quad j = 1, \ldots, n, \\
\sum_{r=1}^{m} u^r y^U_{i} - \sum_{j=1}^{n} y^U_{ij} x^L_{ij} \leq 0, \\
\sum_{r=1}^{m} v^r (\sum_{j=1}^{n} x^L_{ij}) = 1, \\
u^r, v^r \geq 0, \quad r = 1, \ldots, s; \quad i = 1, \ldots, m.
\]

علی‌رغم مدل (۴) این که کمینه وزن ورودی و خروجی کارای خوشه‌بندی بیشینه سازی شود، در حالی که کارای DMU اسکار تغییر باقی می‌ماند. به عبارت دیگر، ب‌بیشینه کمینه وزن است که می‌تواند DMU کارایی خوشه‌بندی کمینه به داده دارد. اما وزن بیشینه کمینه که با مدل (۴) تغییر می‌کند، نسبت به واحد تغییری نبوده نتیجه ثابت می‌باشد. برای مقایسه این مشکل نیاز است تغییر واحد انددازه‌گیری بر نشانگی وزن‌های بیشینه کمینه، همیشه ورودی و خروجی‌ها نرمال‌سازی تهیه کنند. نرمال‌سازی ورودی و خروجی‌ها را می‌توان با معادلات زیر انجام داد:

\[
\begin{align*}
\hat{x}^U_j &= x^U_j / \sum_{k=1}^{m} x^U_k, \quad j = 1, \ldots, n; \quad i = 1, \ldots, m, \\
\hat{x}^L_j &= x^L_j / \sum_{k=1}^{m} x^L_k, \quad j = 1, \ldots, n; \quad i = 1, \ldots, m, \\
\hat{y}^U_j &= y^U_j / \sum_{k=1}^{m} y^U_k, \quad j = 1, \ldots, n; \quad r = 1, \ldots, s, \\
\hat{y}^L_j &= y^L_j / \sum_{k=1}^{m} y^L_k, \quad j = 1, \ldots, n; \quad r = 1, \ldots, s.
\end{align*}
\]

و راهی‌ها تبدیل شده شرط ۱ از یک DMU را برای i = ۱,, m تأثیر می‌کند که هم‌اکنون مدل (۴) کوتاهتر شود، به این صورت:

\[
\text{max } \theta^U \psi \\
\text{s.t. } \sum_{r=1}^{m} u^r \hat{y}^U_{ij} - \sum_{j=1}^{n} \hat{y}^U_{ij} \hat{x}^L_{ij} \leq 0, \quad j = 1, \ldots, n, \\
\sum_{r=1}^{m} u^r \hat{y}^U_{i} - \sum_{j=1}^{n} \hat{y}^U_{ij} \hat{x}^L_{ij} \leq 0, \\
\sum_{r=1}^{m} v^r = 1, \\
u^r, v^r \geq 0, \quad r = 1, \ldots, s; \quad i = 1, \ldots, m.
\]

که در انجا هر (i = ۱,, m) \(\hat{x}^U_{ij} \) و (j = ۱,, n) \(\hat{y}^U_{ij} \) یک DMU نرمال‌سازی شده هستند. با حل مدل (۶) برای هر DMU کارای خوشه‌بندی، مجموعه‌ای از وزن‌های بیشینه کمینه، کارایی DMU \(K \) برای هر \(\psi^U_{i1}, \psi^U_{i2}, \ldots, \psi^U_{i4} \) خوشه‌بندی هستند. در اینجا، تحقیق یک محدودیت وزنی کمینه \(w \) را بر هم‌ارزی وزن‌های DMU و خروجی‌ها در نظر گرفته، تا انتخاب DMU را به طور کامل
Farzipoor Saen, از یکدیگر افتراق داد. مدل‌های کارایی جدید با محدودیت وزنی به صورت زیر ساخته می‌شوند (2009):

\[
\begin{align*}
\text{max} & \quad \hat{\theta}^U = \frac{\sum_{i=1}^{n} u_i y_{ij}^U}{\sum_{i=1}^{n} x_{ij}^U} \\
\text{s.t.} & \quad \hat{\theta}^U = \frac{\sum_{i=1}^{n} u_i y_{ij}^U}{\sum_{i=1}^{n} x_{ij}^U} \leq 1, \quad j = 1, \ldots, n, \\
& \quad \sum_{i=1}^{n} x_{ij} = 1, \\
& \quad u_i, v_i \geq w, \quad r = 1, \ldots, s; \quad i = 1, \ldots, m.
\end{align*}
\]

\[
\begin{align*}
\text{max} & \quad \hat{\theta}^L = \frac{\sum_{i=1}^{n} u_i y_{ij}^L}{\sum_{i=1}^{n} x_{ij}^L} \\
\text{s.t.} & \quad \hat{\theta}^L = \frac{\sum_{i=1}^{n} u_i y_{ij}^L}{\sum_{i=1}^{n} x_{ij}^L} \leq 1, \quad j = 1, \ldots, n, \\
& \quad \sum_{i=1}^{n} x_{ij} = 1, \\
& \quad u_i, v_i \geq w, \quad r = 1, \ldots, s; \quad i = 1, \ldots, m.
\end{align*}
\]

مدل‌های (7) و (8) از یکی دو جهت با مدل‌های (1) و (2) متفاوت هستند. یک تفاوت قابل توجه در میان آن‌ها در معادلهٔ است. به‌دست محدودیت وزنی کمینهٔ \(w \) می‌باشد، هدف به‌دست می‌آید. \(\sum_{i=1}^{n} v_i = 1 \), محدودیت وزنی کمینهٔ \(w \) به‌دست می‌آید. \(\sum_{i=1}^{n} v_i = 1 \) مقدار کردن که در شرط محدودیت وزنی کمینهٔ صدق کند و تعداد مقریات جواب برای مدل‌های (7) و (8) وجود خواهد داشت. مگر اینکه

EU یا DMU متفاوت باشد. لینک این تغییر بین

DMU لذا وزن‌های ورودی و خروجی DMU مختلف غیرقابل مقایسه خواهد بود. چرا که از قبیل متفاوتی منجر به داده‌های خودمان می‌گردد. دومین تفاوت عملیات بین این مدل‌ها وقیم، تفاوت بین این مدل‌ها نرم‌الاسی داده‌های ورودی و خروجی است که برای مدل‌های (7) و (8) لازم است، ولی برای مدل‌های (1) و (3) لازم نیست.

فرض کنید داشته باشیم:

\[
\begin{align*}
& v_i = v_i z, \quad i = 1, \ldots, m \\
& u_i z = u_i, \quad r = 1, \ldots, s \\
& z = 1 / \sum_{i=1}^{n} v_i x_{ij}^L = 1 / \sum_{i=1}^{n} v_i x_{ij}^U
\end{align*}
\]

از توجهی بازی‌های فوق، مدل‌های (7) و (8) را می‌توان به مدل‌های برنامه‌ریزی خطی معادل تبدیل کرد، که در زیر نشان داده شده‌اند (Farzipoor Saen, 2009).
\[
\max \text{ } \hat{\theta}_w^U = \sum_{i=1}^n \tilde{u}_i \tilde{y}_i
\]
\[
\text{s.t. } \sum_{i=1}^n \tilde{u}_i \tilde{y}_i - \sum_{i=1}^m \tilde{v}_i \tilde{x}_i \leq 0, \quad j = 1, \ldots, n,
\]
\[
\sum_{i=1}^m \tilde{v}_i \tilde{x}_i = 1,
\]
\[
\sum_{i=1}^m \tilde{v}_i = z,
\]
\[
z \geq 0,
\]
\[
l_1 \leq \tilde{u}_i, \tilde{v}_i \leq w \cdot z, \quad r = 1, \ldots, s; \quad i = 1, \ldots, m.
\]
\[
\max \text{ } \hat{\theta}_w^L = \sum_{i=1}^n \tilde{u}_i \tilde{y}_i
\]
\[
\text{s.t. } \sum_{i=1}^n \tilde{u}_i \tilde{y}_i - \sum_{i=1}^m \tilde{v}_i \tilde{x}_i \leq 0, \quad j = 1, \ldots, n,
\]
\[
\sum_{i=1}^m \tilde{v}_i \tilde{x}_i = 1,
\]
\[
\sum_{i=1}^m \tilde{v}_i = z,
\]
\[
z \geq 0,
\]
\[
l_1 \leq \tilde{u}_i, \tilde{v}_i \leq w \cdot z, \quad r = 1, \ldots, s; \quad i = 1, \ldots, m.
\]
\[
\max \text{ } \hat{\theta}_w^L = \sum_{i=1}^n \tilde{u}_i \tilde{y}_i
\]
\[
\text{s.t. } \sum_{i=1}^n \tilde{u}_i \tilde{y}_i - \sum_{i=1}^m \tilde{v}_i \tilde{x}_i \leq 0, \quad j = 1, \ldots, n,
\]
\[
\sum_{i=1}^m \tilde{v}_i \tilde{x}_i = 1,
\]
\[
\tilde{u}_r = w \sum_{i=1}^m \tilde{v}_i \geq 0, \quad r = 1, \ldots, s,
\]
\[
\tilde{v}_i = w \sum_{j=1}^m \tilde{v}_j \geq 0, \quad i = 1, \ldots, m,
\]
\[
\tilde{u}_r, \tilde{v}_i \geq 0, \quad r = 1, \ldots, s; \quad i = 1, \ldots, m.
\]

که در اینجا \(\tilde{u}_r\) و \((i = 1, \ldots, m) \tilde{v}_i\) متغیرهای تصمیم گیری هستند.

ایده در نظر گرفتن محدودیت‌های وظیفه نخستین بار در سیاست تعیین کران‌های وزن‌های فاکتورها در مدل‌های مصرفی کارشناسی و ناحیه (Charnes, Cooper, Wei, & Huang, 1989) مطرح شد. این مشترکهبه شکل مدل‌های نسبت مختوطی (AR) اطمنان (Thompson, Langemeier, Lee, Lee, & Thrall, 1990) محدودیت‌های مانند (AR)

این نوع AR \(\gamma, \tilde{u}_r, \leq \tilde{u}_r \leq \delta, \tilde{u}_r, \) و \(\alpha, \tilde{v}_i, \leq \tilde{v}_i \leq \beta, \tilde{v}_i, \)
نمودهای تضمین برای ارزیابی و انتخاب تامین کننده در حضور داده‌های اصلی و ترتیبی، محدودیتهای وزنی و عوامل غیرقابل کنترل

نوع۱ AR نوی I و AR نوع II نوی II است. هستند. بنابراین، با این ترتیب

$$v_i \geq 0, \quad j = 1, ..., m,$$

$$\sum_{i=1}^{m} v_i \geq 0,$$

$$v_i \geq 0, \quad i \in D; \quad u_i \geq 0, \quad i \in N; \quad u_i \geq 0, \quad r = 1, ..., s.$$
\[
\max \quad \hat{\theta}^U = \sum_{i=1}^{s} \tilde{u}_i x_i^U - \sum_{i=N} \tilde{v}_i x_i^L
\]
\[\text{s.t.} \quad \sum_{i=1}^{s} \tilde{u}_i x_i^U - \sum_{i=1}^{m} \tilde{v}_i x_i^L - \sum_{j=0} \tilde{r}_j y^U_{ij} \leq 0, \quad j = 1, \ldots, n, \]
\[\sum_{i=1} \tilde{v}_i x_i^L = 1, \]
\[\tilde{u}_r - w \sum_{i=D} \tilde{v}_i \geq 0, \quad r = 1, \ldots, s, \]
\[\tilde{v}_i \geq \epsilon, \quad i \in D; \quad \tilde{v}_i \geq 0, \quad i \in N; \quad \tilde{u}_r \geq \epsilon, \quad r = 1, \ldots, s. \]

\[
\max \quad \hat{\theta}^L = \sum_{i=1}^{s} \tilde{u}_i x_i^L - \sum_{i=N} \tilde{v}_i x_i^U
\]
\[\text{s.t.} \quad \sum_{i=1}^{s} \tilde{u}_i x_i^L - \sum_{i=1}^{m} \tilde{v}_i x_i^U - \sum_{j=0} \tilde{r}_j y^L_{ij} \leq 0, \quad j = 1, \ldots, n, \]
\[\sum_{i=1} \tilde{v}_i x_i^U = 1, \]
\[\tilde{u}_r - w \sum_{i=D} \tilde{v}_i \geq 0, \quad r = 1, \ldots, s, \]
\[\tilde{v}_i \geq \epsilon, \quad i \in D; \quad \tilde{v}_i \geq 0, \quad i \in N; \quad \tilde{u}_r \geq \epsilon, \quad r = 1, \ldots, s. \]

که در اینجا به‌عنوان یک تغییر در شرایط مشخص می‌شود. DMU یک آزمایشگاه از لحاظ تأثیر ورودی‌های گزینه‌ای می‌باشد.

برای فضای دوم اینجا به‌عنوان DMU، کارایی خوشه‌شناسی گفته می‌شود. در DMU، کارایی خوشه‌شناسی گفته می‌شود گره بی‌پیشتر کارایی کران بالای ممکن آن ۱ باشد. در ظرفیت بزرگ‌تر از ۱، کارایی خوشه‌شناسی گفته می‌شود.

برای این صورت، چارچوب با ماهیت ورودی، که می‌تواند به مجموعه‌ی ناپردازند و برخی از تأثیرگذارانی است، در صورتی که به عنوان نظریه خروجی، حاکمیت در حد قاعده، مقادیر ورودی را حتی امکان‌ناپذیری دهد. که بر این واقعیت تأکید می‌کند که سطح خروجی دهندگان essays تغییر می‌مایند، و مقادیر ورودی به صورت مناسب افزایش داده می‌شوند. با توجه به این نتایج، برآورد کننده‌ی DMU برای مجموعه‌ی امکان‌ناپذیری، اصطلاحاً کارایی بی‌پیشتر و یا بی‌پیشتر کارایی نسبی نامیده می‌شود. برای یک DMU خاص، مثال
m\[
\phi^L = \sum_{i=1}^{s} u_i y_{ij}^{L} - \sum_{i=1}^{m} \bar{v}_i x_i^U \geq 0, \quad j = 1, \ldots, n,
\]
\[\sum_{i=1}^{m} \bar{v}_i x_i^U = 1,
\]
\[u_r, v_i \geq 0, \quad r = 1, \ldots, s; \quad i = 1, \ldots, m.
\]
در مدل‌های (20) و (21)، (32) و (33)، برای دیانی‌های تحت‌نمایش یافته‌ین و محدودیت‌های دیانی‌های تحت‌نمایش یافته‌ین
داهنده، انرژی کاربردی دیانی‌های [\(\varphi^L \), \(\varphi^U \)] را می‌باشد.

[\(\varphi^L \)] و [\(\varphi^U \)] توافقی کاربردی دیانی‌های در DMU‌ها و باره‌ای‌ها می‌باشد.

و این دانش‌هایی باندهای باشند تا [\(\varphi^L \) و \(\varphi^U \)] با ناپاتوی دیانی‌های است. در DEA

یا غیرنکارایی‌های دیانی‌های است.

دل‌های کاربردی که از آن هم داده‌های نادیده و هم عوامل غیرقابل کنترل وجود دارند، به صورت زیر داده می‌شوند:

\[
\begin{align*}
\min \quad \varphi^L_o &= \sum_{r=1}^s u_r y_{r0}^L - \sum_{i=N} v_i x_{i0}^L \\
\text{s.t.} \quad \sum_{r=1}^s u_r y_{rj}^L - \sum_{i=N} v_i x_{ij}^U \geq 0, \quad j = 1, \ldots, n, \\
& \sum_{i=N} v_i x_{i0}^L = 1, \\
& v_r \geq \varepsilon, \quad i \in D; \quad v_r \geq 0, \quad i \in N; \quad u_r \geq \varepsilon, \quad r = 1, \ldots, s.
\end{align*}
\]

(22)

\[
\begin{align*}
\min \quad \varphi^U_o &= \sum_{r=1}^s u_r y_{r0}^U - \sum_{i=N} v_i x_{i0}^U \\
\text{s.t.} \quad \sum_{r=1}^s u_r y_{rj}^U - \sum_{i=N} v_i x_{ij}^U \geq 0, \quad j = 1, \ldots, n, \\
& \sum_{i=N} v_i x_{i0}^U = 1, \\
& v_r \geq \varepsilon, \quad i \in D; \quad v_r \geq 0, \quad i \in N; \quad u_r \geq \varepsilon, \quad r = 1, \ldots, s.
\end{align*}
\]

(23)

همچنین، مدل زیر ساخته شده است تا مقدار \(\psi \) را برای هر DMU

یا ناپاتوی دیانی‌های در حضور متغیرهای قابل کنترل و غیرقابل کنترل مشخص کند:

\[
\begin{align*}
\max \quad \varphi^L_o &= \psi \\
\text{s.t.} \quad \sum_{r=1}^s u_r y_{r0}^L - \sum_{i=N} v_i x_{i0}^L - \sum_{i=N} v_i x_{i0}^U \geq 0, \quad j = 1, \ldots, n, \\
& \sum_{r=1}^s u_r y_{rj}^L - \sum_{i=N} v_i x_{ij}^L - \sum_{i=N} v_i x_{ij}^U = 0, \\
& \sum_{i=N} v_i = 1, \\
& v_r \geq \psi, \quad i \in D; \quad v_r \geq 0, \quad i \in N; \quad u_r \geq \psi, \quad r = 1, \ldots, s.
\end{align*}
\]

(24)

و بالاخره، برای انتزاع گیرنده‌ی باره‌ای دیانی‌های DMU‌ها، مسئله‌ی برنامه‌ریزی خطی برای مدل‌های DEA

یا دیانی‌های DMU به صورت زیر به دست می‌آید:

\[
\begin{align*}
\max \quad \varphi^L_o &= \psi \\
\text{s.t.} \quad \sum_{r=1}^s u_r y_{r0}^L - \sum_{i=N} v_i x_{i0}^L - \sum_{i=N} v_i x_{i0}^U \geq 0, \quad j = 1, \ldots, n, \\
& \sum_{r=1}^s u_r y_{rj}^L - \sum_{i=N} v_i x_{ij}^L - \sum_{i=N} v_i x_{ij}^U = 0, \\
& \sum_{i=N} v_i = 1, \\
& v_r \geq \psi, \quad i \in D; \quad v_r \geq 0, \quad i \in N; \quad u_r \geq \psi, \quad r = 1, \ldots, s.
\end{align*}
\]

(24)
در ادامه، روش تبدیل اطلاعات ترجیح تریبی به دادههای بهرهبرداری یک مدل صفر و یک مدل یک درجه ای (Y.-M. Wang, Greatbanks, et al., 2005) حاکی از صورت اطلاعات ترجیح تریبی داده شده است. معمولاً شیوه اطلاعات ترجیح تریبی ممکن است وجود داشته باشد (1) اطلاعات ترجیح تریبی قوی، مانند rjy

برای مثال، حاکی از صورت اطلاعات ترجیح تریبی قوی، مانند rjy

جدول دیگری برای دادههای ویژه و دادههای کردی خروجی به همین ترتیب قابل تبدیل است.

برای اطلاعات ترجیح تریبی ضعیف، مانند

(27)
حاصله برای هر y_n به صورت زیر داده می‌شود:

$$\hat{y}_n \in [\sigma, 1], \quad j = 1, \ldots, n$$

برای اطلاعات ترکیبی قوی از $y_n > y_{n-1} > \cdots > y_1$، و رابطهٔ ترتیبی زیر پس از تبدیل مقياس وجود دارد:

$$1 \geq \hat{y}_n, \quad \hat{y}_n \geq \hat{y}_{n-1}, \quad j = 1, \ldots, n-1, \quad \hat{y}_n \geq \sigma,$$

که در اینجا یک پارامتر شدت ترکیبی داده شده توسط تسمیم گیرندگی است که در رابطهٔ 1 صدق می‌کند و پارامتر نسبت است که هم توسط تسمیم گیرندگی داده می‌شود. بازه‌ی مجاز حاصله برای هر y_n به صورت زیر داده می‌شود:

$$\hat{y}_n \in [\sigma, \hat{\xi}_{n-1}^{-1}], \quad j = 1, \ldots, n, \quad \sigma \leq \hat{\xi}_{n-1}^{-1}, \quad r_j \leq \hat{\xi}_{n-1}^{-1}.$$

و با بالاخره، برای رابطهٔ پیتافس، بازه‌ی مجاز همان‌هایی که در اطلاعات ترکیبی ضعیف به دست آید از طریق تبدیل مقياس قوی و بر اساس بازه‌ی مجاز اطلاعات پردازش ترکیبی به داده‌های تبدیل می‌شود و لذا می‌توان آن را در مدل‌های DEA (آپراتور) یا تابعه ای به دست آورد (۳) را به صورت $$\phi_{ij} \leq \theta_{ij} \leq \theta_{ij}^u$$ تعریف نمود.

که در اینجا ϕ_{ij} به ترتیب مقدار کارایی i خوشبختانه و یک (DMU) که در انتزاعی و برای کارایی i خوشبختانه و یک (DMU) هستند. روشن است که انتزاعی و برای کارایی i خوشبختانه و یک (DMU) که در انتزاعی و برای کارایی i خوشبختانه و یک (DMU) هستند. روشن است که انتزاعی و برای کارایی i خوشبختانه و یک (DMU)

$$\phi_{ij} = \frac{\phi_{ij}^x}{\phi_{ij}^g}, \quad j = 1, \ldots, n$$

و $\theta_{ij} = \left[\phi_{ij}^x, \phi_{ij}^g\right]$ اساس قواعد عملیاتی روی داده‌های بازه‌ای، داریم (۳۲)

$$\phi_{ij}^x \geq \theta_{ij} \geq \theta_{ij}^u \quad j = 1, \ldots, n$$

و ϕ_{ij}^x نیز به ترتیب زیر اعداد بازه‌ای پاسخگویی که آن را به‌دست می‌آورد.

$$\phi_{ij}^x = \frac{\phi_{ij}^x / \phi_{ij}^g}{\phi_{ij}^x / \phi_{ij}^g}, \quad j = 1, \ldots, n.$$

برای راحتی، روشن که این عملکرد کلی هر تأمین کننده یا نسبت به هر دو کارایی خوشبختانه و یک (DMU) که در انتزاعی و برای کارایی i خوشبختانه و یک (DMU) هستند. روشن نسبت به هر دو کارایی خوشبختانه و یک (DMU) هستند. روشن نسبت به هر دو کارایی خوشبختانه و یک (DMU)

$$\phi_{ij}^x \geq \theta_{ij} \geq \theta_{ij}^u \quad j = 1, \ldots, n$$

و ϕ_{ij}^x نیز به ترتیب زیر اعداد بازه‌ای پاسخگویی که آن را به‌دست می‌آورد.

$$\phi_{ij}^x = \frac{\phi_{ij}^x / \phi_{ij}^g}{\phi_{ij}^x / \phi_{ij}^g}, \quad j = 1, \ldots, n.$$

برای راحتی، روشن که این عملکرد کلی هر تأمین کننده یا نسبت به هر دو کارایی خوشبختانه و یک (DMU) که در انتزاعی و برای کارایی i خوشبختانه و یک (DMU) هستند. روشن نسبت به هر دو کارایی خوشبختانه و یک (DMU)

$$\phi_{ij}^x \geq \theta_{ij} \geq \theta_{ij}^u \quad j = 1, \ldots, n$$

و ϕ_{ij}^x نیز به ترتیب زیر اعداد بازه‌ای پاسخگویی که آن را به‌دست می‌آورد.

$$\phi_{ij}^x = \frac{\phi_{ij}^x / \phi_{ij}^g}{\phi_{ij}^x / \phi_{ij}^g}, \quad j = 1, \ldots, n.$$
ویژگی‌های جذابی دارد و منظور از آن برای مقایسه و رتبه‌بندی پازه‌های کارایی تأیین کننده‌ای حتی در صورتی که درآی در مکز ممکن وی رفع متقاون باشد، استفاده کرد. این روش در زیر خلاصه شده است.

فرض کنید که دو عدد پازه‌ای باشند. به میزان بزرگترین بودن یک عدد پازه‌ای از عدد پازه‌ای دیگر، درجه ترجیح آن می‌گوییم. بر این اساس، تعاریف و خاصیت‌های زیر را داریم.

تعریف ۳: درجه ترجیح (a > b) به صورت زیر تعریف می‌شود:

\[P(a > b) = \max \left(0, a^u - b^u \right) - \max \left(0, a^l - b^l \right) \]

\[(a^u - a^l) + (b^u - b^l)\]

(34)

درجه ترجیح (b > a) از دیدگاه به‌همناس صورت تعریف کرده. یعنی:

\[P(b > a) = \max \left(0, b^v - a^v \right) - \max \left(0, b^w - a^w \right) \]

\[(a^v - a^w) + (b^w - b^v)\]

(35)

و \(a^l = b^v\) وقتی که \(a = b\) و \(P(a > b) = P(b > a) = 0.5\) و \(P(a > b) + P(b > a) = 1\)

تعریف ۴: اگر \(P(a > b) > P(b > a)\) بالاترین است، که با نام=P(\(\theta_{a} > \theta_{b}\))، آنگاه گفت می‌شود که a از \(b\) به میزان \(r_{a}(\theta_{a} > \theta_{b})\) تنها یک عدد پازه‌ای داستان داده می‌شود که b به صورت \(a > b\) نشان داده است. اگر \(P(a > b) < P(b > a)\) باشد، آنگاه گفت می‌شود که \(b > a\) نشان داده می‌شود. در این صورت، \(P(b > a) > P(a > b)\) نشان داده می‌شود.

\[\frac{a^l + a^v}{2} > \frac{b^l + b^v}{2} \]

خاصیت ۴: اگر \(P(a > b) > P(b > a)\) باشد، آنگاه \(P(a > c) > P(b > c) > P(a > b)\) باشد.

\[\max \left(0, a^u - c^u \right) - \max \left(0, a^l - c^l \right) > \max \left(0, b^v - c^v \right) - \max \left(0, b^w - c^w \right) > \max \left(0, a^u - b^u \right) - \max \left(0, a^l - b^l \right) \]

(36)

چهار خاصیت فوق در مقایسه‌ی اعداد پازه‌ای سیار مفیدن. خاصیت ۱ نشان می‌دهد که اگر عدد پازه‌ای هموفرشي نداشته باشد، آنگاه پازه‌ای که در انتهای بالایی است، ۱۰۰ درصد عدد پازه‌ای در انتهای پایین غلبه خواهد داشت. خاصیت ۲ با فاقدی مقایسه‌ی اعداد پازه‌ای رتبه‌بندی می‌گردد. خاصیت ۳، اگر عدد پازه‌ای را با عدد پازه‌ای داده که به عدد پازه‌ای داده که در دیگر قرار گرفته است، نشان می‌دهد. خاصیت ۴ نشان می‌دهد که در روابط تراکم هستند. با کمک تراکم‌ریزی، یک ترتیب رتبه‌بندی کامل اعداد پازه‌ای را می‌توان ایجاد کرد. فرمول رتبه‌بندی در زیر نشان داده شده است:

\[P(\theta_{i} > \theta_{j}) = \frac{\max(0, \theta_{i}^u - \theta_{j}^u) - \max(0, \theta_{i}^l - \theta_{j}^l)}{(\theta_{i}^u - \theta_{j}^u) + (\theta_{j}^u - \theta_{i}^l)} \quad i, j = 1, ..., n; i \neq j \]

(37)
به عنوان یک ورودی کیفی در نظر گرفته شده است.

این متغیر کیفی روی مقدار تئیپی اثرات گیری می‌شود، به طوری که مقدار تئیپی کندگان ۱۸ در بالاترین رتبه است. و تئیپی کندگان ۱۷ در همین پایین‌تر است. خروجی داده‌های کاراکتر اضافه شده در این مطالعه، امتیاز صورت‌گیری‌های دریافت‌شده از تئیپی کندگان بدون حداقل (۳) است. جدول ۱ مشخصات تئیپی کندگان را نشان می‌دهد. در این مطالعه مقداری تئیپی کندگان که در تئیپی کندگان با دست‌های دو نهایت کیفیت‌گذاری می‌شود، به عنوان یک ورودی کیفی در نظر گرفته شده است.

به منظور اضافه‌کردن روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.

به منظور استفاده از روش پیشنهادی، ابتدا داده‌های ورودی و خروجی جدول ۱ را بر اساس مدل‌سازی (۵) نرم‌ال‌سازی می‌کنیم.
جدول شماره 1: مشخصات مربوط به 18 آمین کننده.

<table>
<thead>
<tr>
<th>سیماب (x, j)</th>
<th>ورودی‌ها (y, j)</th>
<th>زمان‌بندی (t, j)</th>
</tr>
</thead>
<tbody>
<tr>
<td>[01/1807, 01/1214]</td>
<td>[400, 180]</td>
<td>924</td>
</tr>
<tr>
<td>[01/1515, 01/1310]</td>
<td>[300, 130]</td>
<td>858</td>
</tr>
<tr>
<td>[01/1717, 01/1101]</td>
<td>[210, 190]</td>
<td>789</td>
</tr>
<tr>
<td>[01/1616, 01/1000]</td>
<td>[150, 110]</td>
<td>708</td>
</tr>
<tr>
<td>[01/1515, 01/1414]</td>
<td>[100, 140]</td>
<td>679</td>
</tr>
<tr>
<td>[01/1515, 01/1515]</td>
<td>[90, 150]</td>
<td>649</td>
</tr>
<tr>
<td>[01/1515, 01/1616]</td>
<td>[80, 160]</td>
<td>629</td>
</tr>
<tr>
<td>[01/1515, 01/1717]</td>
<td>[70, 170]</td>
<td>609</td>
</tr>
<tr>
<td>[01/1515, 01/1818]</td>
<td>[60, 180]</td>
<td>589</td>
</tr>
<tr>
<td>[01/1515, 01/1919]</td>
<td>[50, 190]</td>
<td>569</td>
</tr>
<tr>
<td>[01/1515, 01/2020]</td>
<td>[40, 200]</td>
<td>549</td>
</tr>
<tr>
<td>[01/1515, 01/2121]</td>
<td>[30, 210]</td>
<td>529</td>
</tr>
<tr>
<td>[01/1515, 01/2222]</td>
<td>[20, 220]</td>
<td>509</td>
</tr>
<tr>
<td>[01/1515, 01/2323]</td>
<td>[10, 230]</td>
<td>489</td>
</tr>
<tr>
<td>[01/1515, 01/2424]</td>
<td>[00, 240]</td>
<td>469</td>
</tr>
<tr>
<td>[01/1515, 01/2525]</td>
<td>[00, 250]</td>
<td>449</td>
</tr>
</tbody>
</table>

روتین‌های به این صورت که \(x_{18} \equiv x_{17} \equiv \ldots \equiv x_{1} \equiv y_{18} \equiv y_{17} \equiv \ldots \equiv y_{1} \equiv t_{18} \equiv t_{17} \equiv \ldots \equiv t_{1} \equiv 1 \equiv \ldots \equiv \) پایین‌ترین رتبه.

نتیجه‌گیری: به‌منظور مقایسه و رتبیندی بازدهی گزارش اولیه تأیید کننده، از رویکرد مبتنی بر درجه‌ی ترکیبی به‌طور کلی و همکاران توسیع یافته است. استفاده می‌شود (Y.-M. Wang, Yang, et al., 2005a). درجه 2 رتبیندی هجده تأیید کندن‌ها براساس دیدگاه‌های منفعت‌شناس می‌دهد. به‌کمک نتایج رتبیندی به‌دست آمده از بازدهی‌های کلی، ارزیابی‌ها تصمیم گیرنده می‌تواند تأیید کنندگان شماره 11 را به عنوان بهترین‌ترین‌ترین تأیید کندن انتخاب کند. ارزیابی‌ها تصمیم گیرنده به میزان 0.10 درصد ضایعات دارد که DMU 14 برتر است. DMU 15
جدول شماره (3): نمرات کارایی 18 تأیین کننده با مقدار محندسی ویژه می‌باشد

<table>
<thead>
<tr>
<th>باره‌کارایی کلی ((\phi^i_{\bar{L}_j}))</th>
<th>باره‌کارایی خوشنویسی ((\phi^i_{\bar{U}_j}))</th>
<th>DMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>[]/8966, 2/3277</td>
<td>[]/17/120, 3/422078</td>
<td>1</td>
</tr>
<tr>
<td>[]/830, 2/3891</td>
<td>[]/2/16/507, 2/14235</td>
<td>2</td>
</tr>
<tr>
<td>[]/7187, 2/3186</td>
<td>[]/2/4441, 1/4000</td>
<td>3</td>
</tr>
<tr>
<td>[]/1548, 2/5827</td>
<td>[]/9/12309, 2/5689</td>
<td>4</td>
</tr>
<tr>
<td>[]/7736, 2/2815</td>
<td>[]/2/7266, 1/7712</td>
<td>5</td>
</tr>
<tr>
<td>[]/1/7823, 3/850</td>
<td>[]/1/5697, 2/7273</td>
<td>6</td>
</tr>
<tr>
<td>[]/1688, 2/4127</td>
<td>[]/3/4278, 3/1000</td>
<td>7</td>
</tr>
<tr>
<td>[]/8081, 2/8427</td>
<td>[]/1/8537, 2/5899</td>
<td>8</td>
</tr>
<tr>
<td>[]/3100, 2/6044</td>
<td>[]/2/876, 1/1851</td>
<td>9</td>
</tr>
<tr>
<td>[]/9130, 2/3309</td>
<td>[]/1/2378, 0/1005</td>
<td>10</td>
</tr>
<tr>
<td>[]/2132, 1/2323</td>
<td>[]/9/8528, 5/3191</td>
<td>11</td>
</tr>
<tr>
<td>[]/12861, 2/3227</td>
<td>[]/7/119, 2/4242</td>
<td>12</td>
</tr>
<tr>
<td>[]/3224, 2/500</td>
<td>[]/4/2398, 1/2466</td>
<td>13</td>
</tr>
<tr>
<td>[]/4332, 1/1070</td>
<td>[]/11/243, 2/9280</td>
<td>14</td>
</tr>
<tr>
<td>[]/7063, 2/3010</td>
<td>[]/1/4951, 1/0000</td>
<td>15</td>
</tr>
<tr>
<td>[]/289, 2/2554</td>
<td>[]/2/8997, 1/4653</td>
<td>16</td>
</tr>
<tr>
<td>[]/6281, 2/1787</td>
<td>[]/7/2952, 2/7157</td>
<td>17</td>
</tr>
<tr>
<td>[]/1253, 2/2090</td>
<td>[]/2/1325, 1/7116</td>
<td>18</td>
</tr>
</tbody>
</table>
جدول شماره (۳): رتبه‌بندی‌های ۱۸ تا ۱

<table>
<thead>
<tr>
<th>رتبه بر حسب پایداری کارایی خوشبینانه</th>
<th>رتبه بر حسب پایداری کارایی بیدبینانه</th>
<th>DMU</th>
</tr>
</thead>
<tbody>
<tr>
<td>۱۲</td>
<td>۱۳</td>
<td>۱</td>
</tr>
<tr>
<td>۱۳</td>
<td>۱۴</td>
<td>۲</td>
</tr>
<tr>
<td>۱۷</td>
<td>۱۷</td>
<td>۲</td>
</tr>
<tr>
<td>۳</td>
<td>۴</td>
<td>۳</td>
</tr>
<tr>
<td>۴</td>
<td>۳</td>
<td>۴</td>
</tr>
<tr>
<td>۱۶</td>
<td>۱۶</td>
<td>۵</td>
</tr>
<tr>
<td>۶</td>
<td>۷</td>
<td>۶</td>
</tr>
<tr>
<td>۱۱</td>
<td>۱۱</td>
<td>۷</td>
</tr>
<tr>
<td>۶</td>
<td>۶</td>
<td>۸</td>
</tr>
<tr>
<td>۹</td>
<td>۱۰</td>
<td>۹</td>
</tr>
<tr>
<td>۱۵</td>
<td>۱۵</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۳</td>
<td>۱۰</td>
<td>۱۰</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۱</td>
<td>۱۱</td>
</tr>
<tr>
<td>۷</td>
<td>۸</td>
<td>۱۲</td>
</tr>
<tr>
<td>۹</td>
<td>۹</td>
<td>۱۳</td>
</tr>
<tr>
<td>۰</td>
<td>۰</td>
<td>۱۴</td>
</tr>
<tr>
<td>۱۰</td>
<td>۱۰</td>
<td>۱۵</td>
</tr>
<tr>
<td>۱۲</td>
<td>۱۲</td>
<td>۱۶</td>
</tr>
<tr>
<td>۱۷</td>
<td>۱۷</td>
<td>۱۷</td>
</tr>
<tr>
<td>۵</td>
<td>۵</td>
<td>۱۸</td>
</tr>
</tbody>
</table>

تجسمات برون‌سایر بخش لینک‌گری لجستیک است. به طور سنتی آنها با تأیین مواد خام و قطعات و برخی خدمات مانند حمل و نقل سر و کار داده‌اند. در سال‌های اخیر، با افزایش لجستیک پیمایشکاری، بیماری از این دسته عملکرد را که قبلاً در داخل شرکت انجام می‌شود، بررسی‌های می‌کنند. میزان تدارکات برای اینکه یا آنها ده‌های طرف ثالث، قدرت رقابتی خود را حفظ کرده، کافی در انجام وظایف خود از تکنیک‌های پیشرفته‌تر به‌سر می‌آید.

۲. پژوهش و نتایج

تصمیمات برون‌سایر بخش لینک‌گری لجستیک است. به طور سنتی آنها با تأیین مواد خام و قطعات و برخی خدمات مانند حمل و نقل سر و کار داده‌اند. در سال‌های اخیر، با افزایش لجستیک پیمایشکاری، بیماری از این دسته عملکرد را که قبلاً در داخل شرکت انجام می‌شود، بررسی‌های می‌کنند. میزان تدارکات برای اینکه یا آنها ده‌های طرف ثالث، قدرت رقابتی خود را حفظ کرده، کافی در انجام وظایف خود از تکنیک‌های پیشرفته‌تر به‌سر می‌آید.

Decision Models For Evaluation and Selection of Suppliers in the Presence of Cardinal And Ordinal Data, Weight Restrictions, and Non-Discretionary Factors: An Approach Based On DEA with Double Frontiers

Hossein Azizi
Department of Applied Mathematics, Parsabad Moghan Branch, Islamic Azad University, Parsabad Moghan, Iran

Rasul Jahed (Corresponding Author)
Department of Mathematics, Germi Branch, Islamic Azad University, Germi, Iran
Email: rasuljahed@gmail.com

Abstract
Selection of suppliers for outsourcing is now one of the most important decisions of the purchasing department. These decisions constitute an important part of the production and logistics management in many firms. On the other hand, suppliers can be evaluated and selected from optimistic and pessimistic perspectives. There is an argument that both points of view must be considered simultaneously, and any approach that considers only one perspective is biased. This paper proposes a new “data envelopment analysis (DEA) with double frontiers” approach for evaluation and selection of suppliers. The DEA with double frontiers approach can identify the best supplier in the presence of weight restrictions, non-discretionary factors, and cardinal and ordinal data. This paper proposes to integrate both efficiencies in the form of a geometric mean efficiency that measures the overall performance of each supplier. It is shown that geometric mean efficiency has more discriminative power than any of the optimistic and pessimistic efficiencies. A numerical example illustrates the application of the proposed method.

Keywords: Data envelopment analysis; Supplier selection; Weight restriction; Non-discretionary factors; Cardinal and ordinal data; Optimistic and pessimistic efficiencies.