ﺷﻨﺎﺳﺎﯾﯽ و وزن دﻫﯽ ﺷﺎﺧﺺ ﻫﺎی ارزﯾﺎﺑﯽ و اﻧﺘﺨﺎب ﺗﺄﻣﯿﻦ ﮐﻨﻨﺪﮔﺎن در اداره تدارکات پتروشیمی بندر امام ﺑﺮ اﺳﺎس روﯾﮑﺮد ﺗﺼﻤﯿﻢ ﮔﯿﺮی ﭼﻨﺪﻣﻌﯿﺎره

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد گروه مدیریت اجرایی، واحد اهواز، دانشگاه آزاد اسلامی اهواز، ایران

2 استادیار گروه علم اطلاعات و دانش شناسی، واحد اهواز، دانشگاه آزاد اسلامی اهواز، ایران

چکیده

پژوهش حاضر با هدف ارائه مدلی جهت تحلیل و ارزیابی تأمین کنندگان در اداره تدارکات پتروشیمی بندر امام بر مبنای روش تحلیل سلسله مراتبی با داده های غیرقطعی (خاکستری) به انجام رسید. جامعه آماری تحقیق حاضر، یک گروه خبره 20 نفره از مدیران و کارکنان ارشد اداره تدارکات پتروشیمی بندر امام بودند جهت انتخاب این افراد، سعی شد بعد از تهیه فهرستی کامل، از طریق روش نمونه برداری غیر تصادفی "قضاوتی"، مطلع ترین افراد در حوزه موضوع پژوهش انتخاب و در فرایند تحقیق شرکت داده شوند. ابزار اصلی جمع آوری داده ها در این تحقیق، پرسشنامه هایی بود که بنا به اهداف مختلف طراحی گردید و بعد از اخذ تأییدیه از استاد محترم راهنما، در میان جامعه آماری مورد نظر توزیع شد. بعد از توزیع و جمع آوری داده ها، انجام تجزیه و تحلیل های لازمه از طریق نرم افزار های اس.پی.اس.اس، اکسپرت چویس و اکسل در دستور کار قرار گرفت. در این فرایند، آنالیزهایی همچون آزمون تی (t) و فرایند تحلیل سلسله مراتبی خاکستری به انجام رسید. سرانجام، نتایج تحقیق منجر به شناسایی 4 معیار اصلی (معیار تأمین کننده، معیار عملکرد محصول، معیار عملکرد خدمت، معیار هزینه) و 27 عامل گردید و رتبه آنها تعیین شد. لازم به ذکر است که این پژوهش از لحاظ هدف کاربردی، از لحاظ رویکرد پیمایشی و از نوع مطالعات اکتشافی می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Location and Weight of Assessment and Selection Tables in Imam Petrochemical Procurement Department Based on Service Provider Approach

نویسندگان [English]

  • parviz sepehri mehr 1
  • fariba nazari 2
1 M.Sc. Student, Department of Management, Islamic Azad University, Ahvaz Branch
2 Assistant Professor, Department of Information Science, Islamic Azad University, Ahvaz Branch
چکیده [English]

The purpose of this study was to present a model for analyzing and evaluating suppliers in the Imam Petrochemical Procurement Department based on hierarchical analysis with non-linear (gray) data. The statistical population of this study consisted of an expert group of 20 managers and senior staff of Bandar Imam Petrochemical Procurement Department. To select these individuals, we tried to provide the most knowledgeable people in the field after preparing a complete list, through non-random "judgmental" sampling. Research topic selected and involved in the research process. The main data collection tool in this study was questionnaires designed for different purposes and distributed to the target population after obtaining the approval of the respected supervisor. After distributing and collecting the data, the necessary analyzes were performed through SPSS, Expert Chase and Excel software. In this process, analyzes such as t-test and hierarchical gray analysis were performed. Finally, the research results identified 4 main criteria (supplier criterion, product performance criterion, service performance criterion, cost criterion) and 27 factors were identified and their ranking was determined. It should be noted that this research is of practical purpose, in terms of survey approach and exploratory studies.

کلیدواژه‌ها [English]

  • Supplier evaluation
  • Bandar Imam Petrochemical Procurement Department
  • Hierarchical Gray Analysis Process

1-      Akhavan, P., Elahi.B & Jafari.M. (2014). A new integrated knowledge model in supplier selection: The case of an Asian automotive supply chain. Journal of Education, Business and Society, 7(4), 333-368.

2-      Bhutta, K.S. and Huq, F. (2008). Supplier selection problem: a comparison of the total cost of ownership and analytic hierarchy process approaches. An International Journal Supply Chain of Management, 3(7), 126-135.

3-      Chen, C.-T., Lin, C.-T. and Cheng, S.-F.H. (2006). A fuzzy approach for supplier evaluation and selection in supply chain management. Journal of Production Economics, 102(2), 289-301.

4-      Choi, H. (2018). Predicting financial distress of contractors in the construction industry using ensemble learning. Journal of Expert Systems with Applications, 110 (15), 1-10.

5-      Dag˘deviren, M., Yüksel, _I., & Kurt, M. (in press). (2009). A fuzzy analytic network process (ANP) model to identify faulty behavior risk (FBR) in work system. Journal of  Safety Science, 45 (5), 108-128.

6-      Ghazanfari, M. Reyazi, A. Kazemi, M. (2001). Supply Chain Management and the Importance of Relationships. Journal of Management, 8 (117), 25-46.

7-      Hosseinzadeh, S .(2016). Identifying and selecting the best suppliers using the QUALIFLEX Multi-character Decision Making Method. Journal of Industrial Management (Sanandaj Azad), 37 (5), 1-12.

8-      Kahraman ,C., Cebeci ,U.,Ulukan ,Z.( 2003). Multi-criteria supplier selection using fuzzy AHP. Journal of Logistics Information Management, 6 (3) ,382-394.

9-      Kazemi, M, Alizadeh Zavarem, A. (2012). Optimal Supplier Selection Based on AHP-DEA-TOPSIS Combined Approach. Journal of Operational Research in its Applications (Applied Mathematics), 10 (4), 37-53.

10-  Luitzen de. B. (2017). Procedural rationality in supplier selection: Outlining three heuristics for choosing selection criteria. Journal of Management Decision, 55 (1), 32-56.

11-  Mentian, M.A. (2016). Developing a strategic model for supplier selection using structural equation modeling approaches and fuzzy logic. Strategic Management Research, 22 (60), 115-139.

12-  Monozka R. Trent R and R.Hand ield. (1998). purchasing and supply chain management. Journal of south western college, 33 (5), 158-164

13-  Mullaii, E; Fekri, R. (2016). Applying DEMATEL Technique with a MCDM Model in Evaluation of Agile Supplier Selection Criteria and Supplier Ranking. Fifth National Conference on Management, Economics and Accounting, Tabriz, East Azarbaijan University of Technology and Management, Tabriz Industrial Management Organization.

14-  Namazi, S, Sadeghi, A, Modi, M, Gourbeje Lu, Z, Sattari, Sh. (2014). Evaluation Indicators for Selecting Suppliers of Research Areas Based on Fuzzy Multi Criteria Method. Journal of Industrial Management Quarterly, 9 (28), 29-38.   

15-  Nasiri, MM; Pour Mohammadzia, N. (2015). A Integrated Model for Supplier Selection and Order Allocation in Supply Chain. Journal of Industrial Engineering, 49(1), 117-128.

16-  Saberi Rabar, M; MA,Forghani and Kazemi,M .(2014). Evaluation and Selection of Suppliers in the Supply Chain Using Combined Fuzzy Hierarchy Process Model and Fuzzy Topsis. International Management Conference, Tehran, Mobin Cultural Ambassadors Institute, 23 (2), 23-45.

17-  Sabet Motlagh, M; Salehi Sadeghian, J; Ayazi, SA, Abedini Naeini, M. (2014). Evaluation and Selection of Strategic Suppliers Using the Combined Hierarchical Analysis Process Method and Gray Topsis. Journal of Operational Research in Its Applications (Applied Mathematics), 11(4), 101-117.

18-  Weber,.C.A.,Current,L.R.,Benton,W.C.(1991).Vendor selection criteria and methods. Journal of Operres,50 (2), 2-18.

19-  Wen Wang, T. C., & Chang, T. H. (2007).Application of TOPSIS in evaluating initial training aircraft under a fuzzy environment. Journal of Expert Systems with Applications, 12 (33), 870–880.

20-  Xu.X .(2019). Collaboration between designers and contractors to improve building energy performance. Journal of Cleaner Production, 219(5), 20-32

21-  Zhang, D., Lai, K. K., & Lu, Y. (2009). An novel approach to supplier selection based on vague sets group decision. Journal of Expert Systems with Applications, 36(5), 9557–9563.