شناسایی و اولویت بندی فن آوری‌های کاهنده انتشار SOx مورد مطالعه: نیروگاه‌های حرارتی ایران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای مدیریت صنعتی گرایش مدیریت سیستم‌ها، گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

2 گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، واحد علوم وتحقیقات، دانشگاه آزاد اسلامی، تهران، ایران

3 گروه مدیریت صنعتی، دانشکده مدیریت و اقتصاد، دانشگاه تربیت مدرس، تهران، ایران

4 گروه مدیریت محیط زیست، دانشکده منابع طبیعی و محیط زیست، واحد علوم و تحقیقات ،دانشگاه آزاد اسلامی،تهران،ایران

چکیده

نیروگاه‌های حرارتی با مصرف قابل توجه سوخت‌های فسیلی، نقش عمده‌ای در تولید آلاینده‌های هوا دارند. اکسیدهای گوگرد از جمله این آلاینده‌ها هستند. تاکنون هیچ یک ازنیروگاه‌های حرارتی ایران به فناوری‌های کاهش و کنترل انتشار اکسیدهای گوگرد تجهیز نشده‌اند. با توجه به ضرورت کاهش آلاینده‌های ناشی از احتراق سوخت در نیروگاه‌های کشور، و تحمیل هزینه‌های گزاف اجتماعی ناشی از انتشار بی رویه آلاینده‌ها این مقاله در تلاش است تا با ارائه راهکاری به منظور اولویت بندی و انتخاب فناوری‌های کاهنده اکسیدهای گوگرد با رویکرد سرمایه‌گذاری در نیروگاه-های حرارتی ایران در مدیریت انتشار این آلاینده نقش موثری ایفا کند. در این پژوهش به منظور انتخاب معیارهای موثر بر انتخاب فناوری از تکنیک دلفی فازی و به منظور رتبه بندی فن آوری-های کاهنده SOx از تکنیک نوین رتبه‌بندی همزمان معیارها و گزینه‌ها (SECA) بهره گرفته شد. نتایج پژوهش نشان داد که تکنولوژی‌های اسکرابرهای خشک، فرآیند احیا، تخلیه کرونا، فرایند تزریق جاذب وتکنولوژی جذب به ترتیب اولویت اول تا پنجم انتخاب فناوری را به خود اختصاص داده‌اند.

کلیدواژه‌ها


عنوان مقاله [English]

Identification and Prioritization of SOx Emission Reduction Technologies Case study:Iranian Thermal Power Plants

نویسندگان [English]

  • Shirin Azizi 1
  • reza radfar 2
  • Hanieh Nikomaram 3
  • ali Rajabzadeh 4
1 Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
2 Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran
3 Department of Industrial Management, Tarbiat Modares University, Tehran, Iran
4 Department of Natural Resources and Environment, Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Thermal power plants play a major role in the production of air pollutants, with significant consumption of fossil fuels. Sulfur oxides are among these pollutants.So far, none of Iran's thermal power plants have been equipped with technologies to reduce and control sulfur oxide emissions. Due to the necessity of reducing pollutants caused by fuel combustion in power plants of the country, and imposing high social costs due to the excessive emission of pollutants,This paper seeks to play an effective role in managing the emission of this pollutant by presenting a strategy to prioritize and select sulfur oxide-lowering technology with an investment approach in Iranian thermal power plants. . In this study, fuzzy Delphi technique was used to select the criteria for effective investment in technology and Simultaneous evaluation of criteria and alternatives (SECA)was used to rank SOx-lowering technologies. The results showed that dry scrubber technologies, regenerable process, corona discharge, sorbent injection process and absorption technology were the first to fifth priority of of technology selection, respectively.

کلیدواژه‌ها [English]

  • pollution
  • SOx Reduction Technologies
  • analytical hierarchy process
  • fuzzy Delphi
  • SECA
  1. Azar, A. & Faraji, H. (2010). Fuzzy management science (4th ed.). Tehran: Institute Mehraban book publisher (in Farsi). 
  2. Afgan, N. H., & Carvalho, M. G. (2008). Sustainability assessment of a hybrid energy system. Energy Policy, 36(8), 2903-2910.
  3. Atanes, E., Nieto-Márquez, A., Cambra, A., Ruiz-Pérez, M. C., & Fernández-Martínez, F. (2012). Adsorption of SO2 onto waste cork powder-derived activated carbons. Chemical engineering journal, 211, 60-67.
  4. Basfar, A. A., Fageeha, O. I., Kunnummal, N., Al-Ghamdi, S., Chmielewski, A. G., Licki, J.,& Zimek, Z. (2008). Electron beam flue gas treatment (EBFGT) technology for simultaneous removal of SO2 and NOx from combustion of liquid fuels. Fuel, 87(8-9), 1446 -1452.‏
  5. Calinescu, I., Martin, D., Chmielewski, A., & Ighigeanu, D. (2013). E-Beam SO2 and NOx removal from flue gases in the presence of fine water droplets. Radiation Physics and Chemistry85, 130-138.
  6. Cheng, G., & Zhang, C. (2018). Desulfurization and Denitrification Technologies of Coal-fired Flue Gas. Polish Journal of Environmental Studies, 27 (2).
  7. Cavallaro, F. (2009). Multi-criteria decision aid to assess concentrated solar thermal technologies. Renewable Energy, 34(7), 1678-1685.
  8. Cheng, CH., Ching, H. and Lin, Y. (2002). Evaluating the best main battle tank using fuzzy decision theory with linguistic criteria evaluation. European Journal of Operational Research, 142, 174-186.
  9. Chmielewski, A. G. (2013). Nuclear power for Poland. World Journal of Nuclear Science and Technology, 3(4), 123.
  10. Chmielewski, A. G., Sun, Y., Licki, J., Pawelec, A., Witman, S., & Zimek, Z. (2012). Electron beam treatment of high NOx concentration off-gases. Radiation Physics and Chemistry, 81(8), 1036-1039.
  11.  Chmielewski, A. G., Sun, Y., Pawelec, A., Licki, J., Dobrowolski, A., Zimek, Z., & Witman, S. (2012). Treatment of off-gases containing NOx by electron beam. Catalysis today, 191(1), 159-164.
  12. Chmielewski, A. G., Sun, Y., Zimek, Z., Bułka, S., & Licki, J. (2002). Mechanism of NOx removal by electron beam process in the presence of scavengers. Radiation Physics and chemistry, 65(4-5), 397-403.
  13. Dapkus, R., & Streimikiene, D. (2012). Multi-criteria assessment of electricity generation technologies seeking to implement EU energy policy targets. Proc. Economics Development and Research, 55, 50-56. 
  14. Daim, T., Yates, D., Peng, Y., & Jimenez, B. (2009). Technology assessment for clean energy technologies: The case of the Pacific Northwest. Technology in Society, 31(3), 232-243.                       
  15. Dahlan, I., Lee, K. T., Kamaruddin, A. H., and Mohamed, A. R. (2009). Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal. Journal of Hazardous Materials. 166, 1556_1559.
  16. Dou, B., Pan, W., Jin, Q., Wang, W., & Li, Y. (2009). Prediction of SO2 removal efficiency for wet flue gas desulfurization. Energy Conversion and Management, 50(10), 2547-2553.
  17. Diakoulaki, D., & Karangelis, F. (2007). Multi-criteria decision analysis and cost–benefit analysis of alternative scenarios for the power generation sector in Greece. Renewable and sustainable energy reviews, 11(4), 716-727.
  18. Environmental Protection Agency, Air pollution control technology fact sheet, EPA, EPA-452/F-03034(2003).
  19. European Commission, (2003). Communication from the Commission, Developing an action plan for environmental technology.
  20. Energy Balance Sheet (2015), Ministry of Energy (Central Bank of Iran).
  21. Erol, O. and Kilki, .B.(2012) .An energy source policy assessment using analytical hierarchy process. Energy Conversion and Management, 63, 245-252, 2012.
  22. Jafarinejad, S. (2016). Control and treatment of sulfur compounds specially sulfur oxides (SOx) emissions from the petroleum industry: a review. Chem. Int, 2(4), 242-253.
  23. Ministry of Industry, Mine and Trade of the Islamic Republic of Iran.
  24. Heng L, Guo AH. (2006). Energy efficiency comparison of SACK, Tahoe, Reno and new Reno over ad hoc network based on analytic hierarchy process. In: International conference on wireless communications, networking and mobile computing; p. 1–4.
  25. Häder, M., & Häder, S. (1995). Delphi und Kognitionspsychologie: Ein Zugang zur theoretischen Fundierung der Delphi-Methode. ZUMA Nachrichten, 19(37), 8-34.
  26. Ishikawa, A., T. Amagasa, T. Shiga, G. Tomizawa, R. Tatsuta and H. Mieno (1993). The Max-Min Delphi Method and Fuzzy Delphi Method via Fuzzy Integration. Fuzzy Sets Systems, 55(3), 241- 253. 
  27. Kaldellis, J. K., Anestis, A., & Koronaki, I. (2013). Strategic planning in the electricity generation sector through the development of an integrated Delphi-based multi-criteria evaluation model. Fuel, 106, 212-218.
  28. Kardaras D.K., Karakostas, B. & Mamakou, X.J. (2013). Content presentation personalisation and media adaptation in tourism web sites using Fuzzy Delphi Method and Fuzzy Cognitive Maps. Expert Systems with Applications, 40, 2331-2342.                                
  29. Kamall R. Technology status report: flue gas desulphurisation (FGD) technologies. Department of Trade and Industry; 2000. 1–15. 
  30. Keeney, S., Hasson, F., & McKenna, H. P. (2001). A critical review of the Delphi technique as a research methodology for nursing. International journal of nursing studies, 38(2), 195-200.
  31. Keshavarz-Ghorabaee, M., Amiri, M., Zavadskas, E. K., Turskis, Z., & Antucheviciene, J. (2018). Simultaneous evaluation of criteria and alternatives (SECA) for multi-criteria decision-making. Informatica, 29(2), 265-280.    
  32. Kuo, Y. F., & Chen, P. C. (2008). Constructing performance appraisal indicators for mobility of the service industries using fuzzy Delphi method. Expert Systems with Applications, 35, 1930 -1939.
  33. Kiel, J. H. A., Prins, W., & Van Swaaij, W. P. M. (1992). Modelling of non-catalytic reactions in a gas-solid trickle flow reactor: dry, regenerative flue gas desulphurisation using a silica-supported copper oxide sorbent. Chemical engineering science, 47(17-18), 4271-4286.
  34. Kikuchi, R., and Pelovski, Y. (2009). Low-dose irradiation by electron beam for the treatment of high-SO2 flue gas on a semi-pilot scale-consideration of by-product quality and approach to clean technology. Process Safety and Environmental Protection, 87, 135_143.
  35. Kowalski, K., Stagl, S., Madlener, R., & Omann, I. (2009). Sustainable energy futures: Methodological challenges in combining scenarios and participatory multi-criteria analysis. European Journal of Operational Research, 197(3), 1063-1074.
  36. Lakshmipathiraj, P., Chen, J., Doi, M., Takasu, N., Kato, S., Yamasaki, A., and Kojima, T. (2013(. Lau, L. C., Lee, K. T., and Mohamed, A. R. (2011). Simultaneous SO2 and NO removal using sorbents derived from rice husk: An optimization study. Fuel 90, 1811-181.
  37. Li, T., Zhuo, Y., Lei, J., & Xu, X. (2007). Simultaneous removal of SO2 and NO by low cost sorbent-catalysts prepared by lime, fly ash and industrial waste materials. Korean Journal of Chemical Engineering, 24(6), 1113-1117.
  38. Licki, J., Chmielewski, A. G., Zimek, Z., Tymi_nski, B., and Bu»ka, S. (2002). Electron beam process for SO2 removal from flue gases with high SO2 content. Radiation Physics and Chemistry, 63, 637-639.
  39. Martin, D., Radoiu, M., Calinescu, I., Indreias, I., Oproiu, C., Marghitu, S., & Margaritescu, A.D. (1999). Combined electron beam and microwave treatment for flue gas purification.  Materials and manufacturing processes, 14(3), 365-382.
  40. Mok, Y. S., and Ham, S. W. (1998). Conversion of NO to NO2 in air by a pulsed corona discharge process. Chemical Engineering Science, 53, 1667-1678.
  41. Mok, Y. S., and Nam, I. S. (2002). Modeling of pulsed corona discharge process for the removal of nitric oxide and sulfur dioxide.
  42. Murry, T. J., Pipino, L. L., & Gigch, J. P. (1985). A pilot study of fuzzy set modification of Delphi. Human Systems Management, 5(1), 76-80.
  43. Namba, H., Hashimoto, S., Tokunaga, O., and Suzuki, R. (1998). Electron beam treatment of lignite-burning flue gas with high concentrations of sulfur dioxide and water. Radiation Physics and Chemistry, 53, 673-681.
  44. Onat, N., & Bayar, H. (2010). The sustainability indicators of power production systems. Renewable and Sustainable Energy Reviews, 14(9), 3108-3115.
  45. Pearson B.( 2006). Clean coal technology roadmap. In: EIC climate change technology conference ;p. 1–31.
  46. Polyanskii, A. M., Polyanskii, V. A., Bogdanov, A. A., and Petrov, M. I. (2012). Basic for technology developing cost-effective thermal waste recycling industry. Chemical Physics of EcologicalProcesses, 10, 5-28.                                                                                          
  47. Poullikkas, A. (2015). Review of Design, Operating, and financial considerations in flue gas desulfurization systems. Energy Technology & Policy, 2(1), 92-103.
  48. Pilavachia.P, Stephanidis.S, Pappas.V, and Afgan.N. (2009). Multi-criteria evaluation of hydrogen and natural gas fuelled power plant technologie. Applied Thermal Engineering, 29: 2228-2234.
  49. Radoiu, M. T., Martin, D. I., & Calinescu, I. (2003). Emission control of SO2 and NOx by irradiation methods. Journal of hazardous materials, 97(1-3), 145-158.
  50. D.Stergarek, A.; Horvat, M.; Frkal, P.; Stergarek, J. (2010).Removal of HgO from flue gases in Wet FGD by Catalytic Oxidation with Air-An Experimental Study. Fuel, 89, 3167–3177.
  51. Strategic Document and Technology Development Roadmap, Tehran, Iran, 2015.
  52. Sumathi, S., Bhatia, S., Lee, K. T., and Mohamed, A. R. (2010). Cerium impregnated palm shell activated carbon (Ce/PSAC) sorbent for simultaneous removal of SO2 and NO-Process study. Chemical Engineering  Journal ,162, 51_57. 
  53. Sun, Y., Zwolińska, E., & Chmielewski, A. G. (2016). Abatement technologies for high concentrations of NOx and SO2 removal from exhaust gases: A review. Critical Reviews in Environmental Science and Technology, 46(2), 119-142.                                                                       
  54. T. Tsoutsos, M. Drandaki, N. Frantzeskaki, E. Iosifidis, and I. Kiosses. (2009). Sustainable energy planning by using multi-criteria analysis application in the island of Crete. Energy Policy, 37(5), 1587-1600.
  55. Tan, E., Ünal, S., Doğan, A., Letournel, E., & Pellizzari, F. (2016). New “wet type” electron beam flue gas treatment pilot plant. Radiation Physics and Chemistry119, 109-115.
  56. Rezaei, F., Rownaghi, A. A., Monjezi, S., Lively, R. P., & Jones, C. W. (2015). SO x/NO x removal from flue gas streams by solid adsorbents: a review of current challenges and future directions. Energy & fuels, 29(9), 5467-5486.                                                                                           
  57. Venetsanos, K., Angelopoulou, P., Tsoutsos, T., (2002). Renewable energy sources project appraisal under uncertainty: The case of wind energy exploitation within a changing energy market environment. Energy Policy, 30, 293–307.
  58. Vinogradov, J., Rivin, B., and Sher, E. (2008). NOx reduction from compression ignition engines with pulsed corona discharge. Energy, 33, 480-491.     
  59. World Energy Council, (2001). Energy Technologies for the 21st Century, Energy Research, Development and Demonstration Expenditure 1985–2000: An International Comparison, August 2001.
  60. Xu, G., Yang, Y. P., Lu, S. Y., Li, L., & Song, X. (2011). Comprehensive evaluation of coal-fired power plants based on grey relational analysis and analytic hierarchy process. Energy policy, 39(5), 2343-2351.
  61. Zaremba, T., Mokrosz, W., Hehlmann, J., Szwalikowska, A., & Stapiński, G. (2008). Properties of the wastes produced in the semi-dry FGD installation. Journal of and Thermal Analysis and Calorimetry, 93(2), 439-443.