تحلیلی بر شاخص هزینه تولید انرژی تجدید پذیر در ایران ‏(مورد مطالعه: نیروگاه فتوولتائیک مقیاس خانگی)‏

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران

2 مدیریت تکنولوژی، دانشکده مدیریت و اقتصاد، دانشگاه آزاد اسلامی واحد علوم و تحقیقات، تهران، ایران

3 دانشگاه آزاد اسلامی واحد علوم و تحقیقات - گروه محیط زیست

4 مدیرگروه مدیریت صنعتی دانشگاه تربیت مدرس

چکیده

انرژی تجدیدپذیر نقش مهمی در دستیابی به صرفه جویی در انرژی و کاهش انتشارآلاینده‌ها ایفا می‌کند.‏‎ ‎به عنوان یک منبع انرژی ‏تجدید پذیر پایدار و سازگار با محیط زیست ، سامانه‌های انرژی فتوولتائیک برای تحقیق و توسعه مورد توجه سیاستمداران بخش انرژی ‏کشور است.‏‎ ‎با این حال ، محاسبه هزینه تولید‎ ‎انرژی فتوولتائیک‎ ‎و تعیین قیمت برق تضمینی بر اساس آن عاملی است که مانع تجاری ‏سازی این صنعت نو ظهور می شود.‏‎ ‎در این مقاله یک مدل ریاضی برای محاسبه هزینه تولید برق پروژه های فتوولتائیک بر اساس ‏تجزیه و تحلیل دوره عمر نیروگاه به کارگرفته شده است.‏‎ ‎ حداقل مبلغ خرید برق تضمینی توسط آن محاسبه شده است.تجزیه و تحلیل حساسیت برای بررسی تأثیر متغیرهای مختلف بر ‏LCOE‏ ‏پروژه های ‏PV ‏ انجام شده است. نتایج تحلیل حساسیت نشان داد که فاکتور ظرفیت تاثیرگذارترین متغیر در تعیین مقدار ‏LCOE‏ ‏است.‏‎ ‎این تحقیق از دولت برای تدوین سیاست های تشویقی برای صنعت پشتیبانی می کند‎ ‎‏.‏

کلیدواژه‌ها


عنوان مقاله [English]

An analysis of the cost index of renewable energy production in Iran ‎(Case study: home scale photovoltaic power plant)‎

نویسندگان [English]

  • Shirin Azizi 1
  • Reza Radfar 2
  • Hanieh Nikomaram 3
  • Ali Rajabzadeh 4
1 Azad univercity- science & research branch
2 Technology Management, Faculty of Management and Economy, Azad University of Science and Research, Tehran, Iran
3 Islamic Azad University Science and Research Branch - Department of Environment
چکیده [English]

Renewable energy plays significant role in achieving energy savings and emissions reduction. As a ‎sustainable and environmental friendly renewable energy source, solar photovoltaic (PV) is of ‎interest for research and development. However, the cost of PV generation and determining FIT ‎based on it is a factor hampering the commercialization of this emerging industry. This paper uses a ‎mathematical model of the levelized cost of energy (LCOE) to calculate the power generation cost ‎of PV projects on the basis of lifetime cost structure analysis. The minimum amount of guaranteed electricity purchase is calculated by it.A sensitivity analysis is conducted to ‎examine the impact of different variables on the LCOE of PV projects. The results of sensitivity ‎analysis showed that the capacity factor is the most influential variable in determining the LCOE ‎value. This research provides support for government to formulate incentive policies for the ‎industry And thus offers the development of the use of renewable energy.

کلیدواژه‌ها [English]

  • Renewable Energy
  • levelized cost of electricity (LCOE)
  • solar photovoltaic (PV) costs
  • ‎ sensitivity analysis
  1. Ahmad, S., Tahar, R. M., Muhammad-Sukki, F., Munir, A. B., & Rahim, R. A. (2015). Role of feed-in tariff policy in promoting solar photovoltaic investments in Malaysia:a system dynamics approach. Energy, 808-815.
  2. Al-Maamary, H., Kazem, H., & Chaichan, M. (2017). enewable energy and GCC States energy challenges in the 21st century: A review. International Journal of Computation and Applied Sciences, 2(1), 11-18.
  3. Bakhshi, R., & Sadeh, J. (2018). Economic evaluation of grid connected photovoltaic systems viability under a new dynamic feed–in tariff scheme: A case study in Iran. Renewable Energy, 119, 354-364. doi:10.1016/j.renene.2017.11.093
  4. Bakhshi, R., & Sadeh, J. (2018). Economic evaluation of grid–connected photovoltaic systems viability under a new dynamic feed–in tariff scheme: A case study in Iran. Renewable energy, 119, 354-364.
  5. Bakhshi, R; Sadeh, J. (2018). Economic evaluation of grid–connected photovoltaic systems viability under a new dynamic feed–in tariff scheme: A case study in Iran. Renewable energy, 119, 354-364. doi:10.1016/j.renene.2017.11.093
  6. Beck, A. L., & Rai, V. (2020). Solar Soft Cost Ontology: A Review of Solar Soft Costs. Prog.Energy, 2(1).
  7. Bilgili, M., Ozbek, A., Sahin, B., & Kahraman, A. (2015). An overview of renewable electric power capacity and progress in new technologies in the world. Renewable and Sustainable Energy Reviews, 323-334. doi:10.1016/j.rser.2015.04.148
  8. Borgonovo, E., & Plischke, E. (2016). Sensitivity analysis: a review of recent advances. European Journal of Operational Research, 248(3), 869-887.
  9. Chung, D., Davidson, C., Fu, R., Ardani, K., & Margolis, R. (2015). US photovoltaic prices and cost breakdowns. Q1 2015 benchmarks for residential, commercial, and utility-scale systems. National Renewable Energy Lab.(NREL).
  10. Congress, U. (2020). Further Consolidated Appropriations Act.
  11. EIA, U. (2016). Capital Cost Estimates for Utility Scale Electricity Generating Plants. Washington, DC, USA: US Department of Energy Information Administration.
  12. Elia, A., Kamidelivand, M., Rogan, F., & Gallachóir, B. Ó. (2021). Impacts of innovation on renewable energy technology cost reductions. Renewable and Sustainable Energy Reviews, 1-31. doi:https://doi.org/10.1016/j.rser.2020.110488
  13. Energy, U. D. (2020). Goals of the Solar Technologies Office.
  14. Freyman, T., & Tran, T. (2019). Renewable Energy Discount Rate Survey Results. Grant Thornton UK LLP.
  15. Fu, R. F., & Margolis, R. (2018). U.S. Solar Photovoltaic System Cost Benchmark: Q1. National Renewable Energy Laboratory.
  16. Fu, R; Feldman, D. J; Margolis, R. M. (2018). US solar photovoltaic system cost benchmark: Q1. National Renewable Energy Lab.(NREL).
  17. Geissmann, T., & Ponta, O. (2017). A probabilistic approach to the computation of the levelized cost of electricity. Energy, 124, 372-381. doi:10.1016/j.energy.2017.02.078
  18. Hernández Moro, J., & Martínez Duart, J. M. (2012). CSP electricity cost evolution and grid parities based on the IEA roadmaps. Energy policy, 41, 184-192.
  19. Hernández-Moro, J., & Martínez-Duart, J. (2013). Analytical model for solar PV and CSP electricity costs: Present LCOE values and their future evolution. Renew. Sustain. Energy Rev, 119–132.
  20. Information, U. E. (2020). Levelized Cost and Levelized Avoided Cost of New Generation Resources in the Annual Energy Outlook 2020.
  21. IRENA. (2019). Renewable Cost Database.
  22. IRENA. (2020). Renewable Power Generation Costs in 2019.
  23. Lai, C. S., & McCulloch, M. D. (2017). Levelized cost of electricity for solar photovoltaic and electrical energy storage. Applied energy, 190, 191-203.
  24. Liang, X. (2017). Emerging power quality challenges due to integration of renewable energy sources. 53(2), 855-866.
  25. Limmanee, A., Songtrai, S., Udomdachanut, N., Kaewniyompanit, S., Sato, Y., Nakaishi, M., & Sakamoto, Y. (2017). Degradation analysis of photovoltaic modules under tropical climatic conditions and its impacts on LCOE. 102, 199-204. doi:10.1016/j.renene.2016.10.052
  26. Marks-Bielska, R., Bielski, S., Pik, K., & Kurowska, K. (2020). energies, 2-23. doi:10.3390/en13184624
  27. Mohammadi, K., Naderi, M., & Saghafifar, M. (2018). Economic feasibility of developing grid-connected photovoltaic plants in the southern coast of Iran. 156, 17-31. doi:10.1016/j.energy.2018.05.065
  28. Mousavian, H. M., Shakouri, G. H., Mashayekhi, A. N., & Kazemi, A. (2020). Does the short-term boost of renewable energies guarantee their stable long-term growth? Assessment of the dynamics of feed-in tariff policy. Renewable Energy, 159, 1252e1268. doi:10.1016/j.renene.2020.06.068
  29. National Renewable Energy Laboratory. (2020). CREST: Cost of Renewable Energy Spreadsheet. Retrieved from https://www.nrel.gov/analysis/crest.html.
  30. National Renewable Energy Laboratory. (2020). System Advisor Model. Retrieved from https://sam.nrel.gov/
  31. NREL. (2019). Levelized Cost of Energy (LCOE).
  32. Parrado, C., Marzo, A., Fuentealba, E., & Fernández, A. (2016). 2050 LCOE improvement using new molten salts for. Renew. Sustain. Energy Rev, 57, 505–514.
  33. Rosales-Calderon, O. &. (2019). A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol. Biotechnology for biofuels, 12(1), 1-58.
  34. Shen, W., Chen, X., Qiu, J., Hayward, J. A., Sayeef, S., Osman, P., & Dong, Z. Y. (2020). A comprehensive review of variable renewable energy levelized cost of electricity. Renewable and Sustainable Energy Reviews, 133.
  35. Short, W., Packey, D. J., & Holt, T. (1995). A Manual for the Economic Evaluation of Energy Efficiency and Renewable Energy Technologies. National Renewable Energy Laboratory.
  36. Syal, S. M., & MacDonald, E. F. (2020). Quantifying the Importance of Solar Soft Costs: A New Method to Apply Sensitivity Analysis to a Value Function. ASME Journal of Mechanical Design, 142(12).
  37. Tabatabaei, S. M., Hadian, E., Marzban, H., & Zibaei, M. (2017). Economic, welfare and environmental impact of feed-in tariff policy: A case study in Iran. Energy Policy, 102, 164-169.
  38. Tran, T. T., & Smith, A. D. (2017). Evaluation of renewable energy technologies and their potential for technical integration and cost-effective use within the US energy sector. Renewable and Sustainable Energy Reviews, 1372-1388. doi:10.1016/j.rser.2017.05.228
  39. Tran, T. T., & Smith, A. D. (2018). Incorporating performance-based global sensitivity and uncertainty analysis into LCOE calculations for emerging renewable energy technologies. Applied energy, 216, 157-171.
  40. WHO. (2019). Household air pollution and health. World Health Organization. Retrieved from https://www.who.int/news-room/fact-sheets/detail/household-air-pollution-and-health
  41. World economic outlook. (2020). Inflation rate, average consumer prices. Retrieved from International Monetary Fund: http://www.imf.org/external/
  42. Yu Zhao, Z., Long Chen, Y., & Thomson Douglas, J. (2017). A comprehensive review of variable renewable energy levelized cost of electricity. Renewable and Sustainable Energy Reviews, 120, 117-127. doi:10.1016/j.energy.2016.12.122
  43. Zawalińska, K., Kinnunen, J., Gradziuk, P., & Celińska-Janowicz, D. (2020). To Whom Should We Grant a Power Plant? Economic Effects of Investment in Nuclear Energy in Poland. Energies, 13(11).
  44. Zhai, R., Hu, J., & Saddler, J. (2016). What are the major components in steam pretreated lignocellulosic biomass that. Energy, 3429–3436.
  45. Zhuang, X., Xu, X., Liu, W., & Xu, W. (2019). LCOE Analysis of Tower Concentrating Solar Power Plants Using Different Molten-Salts for Thermal Energy Storage in China. 12(7). doi:10.3390/en12071394